Search results

Search for "carbon nanomembranes (CNMs)" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • create ultrathin carbon nanomembranes (CNMs) [25][26]. Depending on the precursor molecules and the exposure conditions, thickness [27], mechanical stiffness [28], and electronic transport characteristics [29][30] of CNMs can be tailored. Carbon nanomembranes have been applied as electron microscopy
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • agent need to be considered and further studied. Keywords: 2D materials; carbon nanomembranes (CNMs); focused electron beam-induced processing; metallic nanostructures; self-assembled monolayers; Introduction Focused electron beam-induced processing (FEBIP) is a powerful maskless “direct-write
  • 2D materials used in this approach are ultrathin carbon nanomembranes (CNMs) [21]. CNMs are versatile 2D organic materials with high thermal [22] and mechanical [23] stability that can be produced by electron-induced cross-linking of aromatic self-assembled monolayers (SAMs) [24] and transferred onto
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • -field scanning transmission ion microscopy (STIM) holder. The holder design is based on the concept of a SE conversion holder. The holder can easily be implemented into any existing HIM. It is mounted on the sample stage without modifications to the microscope. Carbon nanomembranes (CNMs) serve as test
  • with line integration of 64 lines. The field of view was set to 10 µm for the thin carbon membrane and to 15 µm for the thick membrane. The carbon nanomembranes (CNMs) were formed by low-energy electron irradiation of aromatic self-assembled monolayers (thin CNMs) or spin coated layers of aromatic
PDF
Album
Full Research Paper
Published 26 Feb 2021

Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes

  • Sascha Koch,
  • Christopher D. Kaiser,
  • Paul Penner,
  • Michael Barclay,
  • Lena Frommeyer,
  • Daniel Emmrich,
  • Patrick Stohmann,
  • Tarek Abu-Husein,
  • Andreas Terfort,
  • D. Howard Fairbrother,
  • Oddur Ingólfsson and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2017, 8, 2562–2571, doi:10.3762/bjnano.8.256

Graphical Abstract
  • may thus lead to a significantly faster conversion of the respective SAMs into carbon nanomembranes (CNMs) without the need for an increased current density. XPS data support the notation that DEA sensitization may be used to achieve more efficient electron-induced cross-linking of SAMs, revealing
  • nanomembrane; dissociative electron attachment; dissociative ionization; helium ion microscopy; self-assembled monolayers; X-ray photoelectron spectroscopy; Introduction Carbon nanomembranes (CNMs) are two-dimensional molecular sheets with a thickness of one to a few nanometers, high mechanical strength, and
  • 50 eV. Cross-linking of the molecular layers and the formation of mechanically stable carbon nanomembranes (CNMs) was then monitored through X-ray photoelectron spectroscopy (XPS) during the irradiation process. This enables the transition of the SAMs into CNMs to be observed and allows the
PDF
Album
Full Research Paper
Published 30 Nov 2017

Imaging of carbon nanomembranes with helium ion microscopy

  • André Beyer,
  • Henning Vieker,
  • Robin Klett,
  • Hanno Meyer zu Theenhausen,
  • Polina Angelova and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1712–1720, doi:10.3762/bjnano.6.175

Graphical Abstract
  • nanomembrane; helium ion microscopy; self-assembled monolayers; Introduction Carbon nanomembranes (CNMs) are extremely thin and homogeneous two-dimensional objects consisting of a monolayer of laterally cross-linked molecules. They are made by exposing a self-assembled monolayer (SAM) of aromatic molecules
  • Andre Beyer Henning Vieker Robin Klett Hanno Meyer zu Theenhausen Polina Angelova Armin Golzhauser Physics of Supramolecular Systems and Surfaces, Bielefeld University, 33615 Bielefeld, Germany CNM Technologies GmbH, 33609 Bielefeld, Germany 10.3762/bjnano.6.175 Abstract Carbon nanomembranes
  • (CNMs) prepared from aromatic self-assembled monolayers constitute a recently developed class of 2D materials. They are made by a combination of self-assembly, radiation-induced cross-linking and the detachment of the cross-linked SAM from its substrate. CNMs can be deposited on arbitrary substrates
PDF
Album
Supp Info
Full Research Paper
Published 12 Aug 2015

Fabrication of carbon nanomembranes by helium ion beam lithography

  • Xianghui Zhang,
  • Henning Vieker,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2014, 5, 188–194, doi:10.3762/bjnano.5.20

Graphical Abstract
  • universal method for the fabrication of ultrathin carbon nanomembranes (CNMs). Here we demonstrate the cross-linking of aromatic SAMs due to exposure to helium ions. The distinction of cross-linked from non-cross-linked regions in the SAM was facilitated by transferring the irradiated SAM to a new substrate
  • attachment; helium ion microscopy; ion beam-organic molecules interactions; self-assembled monolayers; Introduction Carbon nanomembranes (CNMs) with monomolecular thickness and macroscopic lateral size represent a new type of functional two-dimensional (2D) materials [1]. A universal scheme to fabricate
PDF
Album
Full Research Paper
Published 21 Feb 2014

Mechanical characterization of carbon nanomembranes from self-assembled monolayers

  • Xianghui Zhang,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2011, 2, 826–833, doi:10.3762/bjnano.2.92

Graphical Abstract
  • Xianghui Zhang Andre Beyer Armin Golzhauser Department of Physics, Physics of Supramolecular Systems and Surfaces, Bielefeld University, 33615 Bielefeld, Germany 10.3762/bjnano.2.92 Abstract This paper reports on the mechanical characterization of carbon nanomembranes (CNMs) with a thickness of 1
  • nanoparticle assemblies at the fluid interfaces [7][8]. Freestanding nanomembranes with thicknesses from 20 to 70 nm were achieved by these approaches. Eck et al. reported the fabrication of carbon nanomembranes (CNMs) with a thickness of 1 nm by electron-induced cross-linking of aromatic self-assembled
PDF
Album
Video
Full Research Paper
Published 20 Dec 2011
Other Beilstein-Institut Open Science Activities